Abstract
Snoring patients, as a high-risk group for OSA, are prone to the combination of severe OSA and face serious health threats. The aim of our study was to develop and validate a nomogram to predict the occurrence of severe OSA in snorers, in order to improve the diagnosis rate and treatment rate in this population. A training cohort of 464 snoring patients treated at our institution from May 2021 to October 2022 was divided into severe OSA and non-severe OSA groups. Univariate and multivariate logistic regression were used to identify potential predictors of severe OSA, and a nomogram model was constructed. An external hospital cohort of 210 patients was utilized as an external validation cohort to test the model. Area under the receiver operating characteristic curve, calibration curve, and decision curve analyses were used to assess the discriminatory power, calibration, and clinical utility of the nomogram, respectively. Multivariate logistic regression demonstrated that body mass index, Epworth Sleepiness Scale total score, smoking history, morning dry mouth, dream recall, and hypertension were independent predictors of severe OSA. The area under the curve (AUC) of the nomogram constructed from the above six factors is 0.820 (95% CI: 0.782-0.857). The Hosmer-Lemeshow test showed that the model had a good fit (P = 0.972). Both the calibration curve and decision curve of the nomogram demonstrated the corresponding dominance. Moreover, external validation further confirmed the reliability of the predicted nomograms (AUC=0.805, 95% CI: 0.748-0.862). A nomogram predicting the occurrence of severe OSA in snoring patients was constructed and validated with external data for the first time, and the findings all confirmed the validity of the model. This may help to improve existing clinical decision making, especially at institutions that do not yet have devices for diagnosing OSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.