Abstract
Concrete is a very effective material for the construction of buildings and infrastructure around the world. Unfortunately, typical concrete is a large contributor to CO2 emissions and consumption of natural reserves. CO2 Concrete allows the mitigation of these downfalls by carbonating recycled aggregate, reducing CO2 emissions, reusing crushed masonry materials and conserving virgin aggregate. CO2 Concrete can also be considered reliable as its compressive strength can be accurately predicted by both regression analysis and artificial neural networks. The artificial neural network created for this paper allow accurate prediction of the compressive strength for CO2 Concrete. The artificial neural network exhibited a strong relationship with the experimental specimens, revealing a multiple R of 0.98 and an R square of 0.95. The artificial neural network was also validated by 22 laboratory validation concrete mixes. The artificial neural network displayed an average error of 1.24 MPa or 3.43% in the validation mixes with 59% of concrete samples within 3% error and 77% being within 5% error. The successful prediction of compressive strength of CO2 Concrete can help a greater mainstream use of the green material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.