Abstract

The cement sheath of CCUS well is vulnerable to carbonization corrosion upon protracted exposure to a CO2-rich setting, which reduces the strength of the cement sheath and increases the porosity, eventually leading to CO2 leakage. Predicting the carbonation depth and regularity of the cement sheath of CO2 injection wells allows an estimation of the service life , to ensure safe operation of CO2 injection wells. However, most of the current prediction models for CO2 corrosion depth are still semi-empirical models, which are fitted to experimental data but are not universally applicable. This may be resolved by our CO2 corrosion depth prediction model supported by the law of mass conservation, diffusion convection equation, and calcium precipitation rate. The influence of seven factors on the corrosion depth was analyzed and ranked. The rise in corrosion time, temperature, chloride ion content, CO2 partial pressure, water-cement ratio, and water saturation increases corrosion depth and CO2 content, in addition to porosity and permeability, while increasingly corrosion-resistant material causes the opposite effect. The cement sheath begins to be seriously corroded by CO2 partial pressure exceeding 10 MPa, chloride ion content over 0.20 mol/L, or temperature higher than 70 °C. Water saturation significantly affects corrosion, and the CO2 corrosion depth at 0.8 is 10.16 times that at 0.6. The CO2 content at the distance of 0.2 m–0.93 m from the corroded end surface basically does not change after 7 years of corrosion. Water-cement ratio increased to 0.48 provides conditions for a large amount of CO2 accumulation in the cement sheath. The addition of corrosion-resistant materials can reduce the initial porosity and permeability of cement sheath. The seven factors is ranked in descending order of influence as water saturation, corrosion-resistant material, water-cement ratio, CO2 partial pressure, corrosion time, chloride ion content, and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call