Abstract

Vacuum assisted resin transfer molding (VARTM) is one of the promising manufacturing techniques for large-scaled composite components with complex geometry, such as yachts or fishing vessels. To reduce the failure risk of production, numerical simulation of resin infusion process before manufacture is helpful. In general, basic characteristics of perform, such as permeability, need to be measured by experiments in practice. However, this experimental approach sometimes may be costly because specific types of fibers as well as preform with different layer numbers need individual experiments. This study first introduces the experimental procedure of measuring the permeability of reinforcements via Darcy's Law. On the basis of experimental observation of permeability of different layer order, we assumed that the change of the permeability in different experiments is mainly affected by the space provided by the fiber. Accordingly, an efficient prediction method based on the idea of “total porous space of the reinforcement” is proposed. It is shown that this method can give reference between prediction and experiments of the mat/roving fiber preform. Though the resin flowing is complex, this prediction gives a simple, macroscopic reference way for the injection characteristic of large-sized ships, and consequently facilitates the numerical design work of composite structures manufactured by VARTM technique. POLYM. COMPOS., 27:665–670, 2006. © 2006 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call