Abstract
It is paramount to ensure the integrity and authenticity of medical images in telemedicine. This paper proposes an imperceptible and reversible Medical Image Watermarking (MIW) scheme based on image segmentation, image prediction and nonlinear difference expansion for integrity and authenticity of medical images and detection of both intentional and unintentional manipulations. The metadata from the Digital Imaging and Communications in Medicine (DICOM) file constitutes the authentication watermark while the integrity watermark is computed from Secure Hash Algorithm (SHA)-256. The two watermarks are combined and compressed using the Lempel Ziv (LZ) -77 algorithm. The scheme takes advantage of the large smooth areas prevalent in medical images. It predicts the smooth regions with zero error or values close to zero error, while non-smooth areas are predicted with large error values. The binary watermark is encoded and extracted in the zero-prediction error using a nonlinear difference expansion. The binary watermark is concentrated more on the Region of non-interest (RONI) than the Region of interest (ROI) to ensure a high visual quality while maintaining a high capacity. The paper also presents a separate low degradation side information processing algorithm to handle overflow. Experimental results show that the scheme is reversible and has a remarkable imperceptibility and capacity that are comparable to current works reported in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Computer Science and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.