Abstract

ABSTRACTShape fidelity is a critical issue that hinders the wider application of Additive Manufacturing (AM) technologies. In many AM processes, the shape of a product is usually different from its input design and the deviation usually depends on certain process parameters. In this article, we aim to improve the shape fidelity of AM products through compensation, with the information on these parameters. To achieve this, a two-step hierarchical scheme is proposed to predict the in-plane deviation of the product shape, which relates to the process parameters and the two-dimensional input shape. Based on this prediction procedure, a shape compensation strategy is developed that greatly improves the dimensional accuracy of products. Experimental studies of fused deposition modeling processes validate the effectiveness of our proposed scheme in terms of both predicting the shape deviation and improving the shape accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.