Abstract

Burkholderia pseudomallei causes melioidosis, a potentially fatal infectious disease in tropical and subtropical countries worldwide. The intracellular behaviour of this pathogen in host cells has been reported to impact the severity of melioidosis, including the development of septicaemia, a consequence of pneumonia melioidosis. We previously identified a predicted cation transporter protein, BPSS1228, that participates in the transitional stage of this intracellular pathogen. For further analysis, in this study B. pseudomallei bpss1228 mutant and complemented strains were constructed and bacterial infectivity on human lung epithelial cells, A549, investigated in vitro Burkholderia pseudomallei bpss1228 mutant showed impaired bacterial adhesion and invasion into A549 cells compared with wild-type strain, while the deficient phenotypes were restored to wild-type levels by the complemented strain. Additionally, the inactivation of bpss1228 in the mutant strain affected flagella-based swimming on a semi-solid surface and resistance to acid stresses simulating intracellular environments. These observations of BPSS1228 relating to B. pseudomallei infection strategies shed a new light on its association with intracellular B. pseudomallei during the interaction with host cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.