Abstract

Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, each side seeks the best scheme with the purpose of maximizing its own objective function. In this paper, a game theoretic approach based on predatorprey particle swarm optimization (PP-PSO) is presented, and the dynamic task assignment problem for multiple unmanned combat aerial vehicles (UCAVs) in military operation is decomposed and modeled as a two-player game at each decision stage. The optimal assignment scheme of each stage is regarded as a mixed Nash equilibrium, which can be solved by using the PP-PSO. The effectiveness of our proposed methodology is verified by a typical example of an air military operation that involves two opposing forces: the attacking force Red and the defense force Blue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call