Abstract

An all-at-once linear system arising from the nonlinear tempered fractional diffusion equation with variable coefficients is studied. Firstly, the nonlinear and linearized implicit schemes are proposed to approximate such the nonlinear equation with continuous/discontinuous coefficients. The stabilities and convergences of the two schemes are proved under several suitable assumptions, and numerical examples show that the convergence orders of these two schemes are $1$ in both time and space. Secondly, a nonlinear all-at-once system is derived based on the nonlinear implicit scheme, which may suitable for parallel computations. Newton's method, whose initial value is obtained by interpolating the solution of the linearized implicit scheme on the coarse space, is chosen to solve such the nonlinear all-at-once system. To accelerate the speed of solving the Jacobian equations appeared in Newton's method, a robust preconditioner is developed and analyzed. Numerical examples are reported to demonstrate the effectiveness of our proposed preconditioner. Meanwhile, they also imply that such the initial guess for Newton's method is more suitable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.