Abstract

Hepatocyte transplantation has been extensively investigated as an alternative to orthotopic liver transplantation. However, its application in routine clinical practice has been restricted because of low initial engraftment and subsequent repopulation. Using mice as a model, we have developed a minimally invasive and nontoxic preconditioning strategy based on preadministration of antibodies against hepsin to increase donor hepatocyte retention and engraftment rate. Liver sinusoid diameters decreased significantly with antihepsin pretreatment, and graft cell numbers increased nearly 2-fold in the recipients' liver parenchyma for 20 days after hepatocyte transplantation. Postoperative complications such as hepatic ischemia injury or apparent immune cell accumulation were not observed in recipients. In a hemophilia B mouse model, antihepsin preconditioning enhanced the expression and clotting activity of coagulation factor IX (FIX) to nearly 2-fold that of immunoglobulin G-treated controls and maintained higher plasma FIX clotting activity relative to the prophylactic range for 50 days after hepatocyte transplantation. Antihepsin pretreatment combined with adeno-associated virus-transduced donor hepatocytes expressing human FIX-Triple, a hyperfunctional FIX variant, resulted in plasma FIX levels similar to those associated with mild hemophilia, which protected hemophilia B mice from major bleeding episodes for 50 days after transplantation. Furthermore, antihepsin pretreatment and repeated transplantation resulted in extending the therapeutic period by 30 days relative to the immunoglobulin G control. Thus, this antihepsin strategy improved the therapeutic effect of hepatocyte transplantation in mice with tremendous safety and minimal invasion. Taken together, we suggest that preconditioning with antihepsin may have clinical applications for liver cell therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.