Abstract

We propose a new preconditioner for the Ohta--Kawasaki equation, a nonlocal Cahn--Hilliard equation that describes the evolution of diblock copolymer melts. We devise a computable approximation to the inverse of the Schur complement of the coupled second-order formulation via a matching strategy. The preconditioner achieves mesh independence: as the mesh is refined, the number of Krylov iterations required for its solution remains approximately constant. In addition, the preconditioner is robust with respect to the interfacial thickness parameter if a timestep criterion is satisfied. This enables the highly resolved finite element simulation of three-dimensional diblock copolymer melts with over 1 billion degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.