Abstract

Various methods have been developed for computing the correlation matrix nearest in the Frobenius norm to a given matrix. We focus on a quadratically convergent Newton algorithm recently derived by Qi and Sun. Various improvements to the efficiency and reliability of the algorithm are introduced. Several of these relate to the linear algebra: the Newton equations are solved by minres instead of the conjugate gradient method, as it more quickly satisfies the inexact Newton condition; we apply a Jacobi preconditioner, which can be computed efficiently even though the coefficient matrix is not explicitly available; an efficient choice of eigensolver is identified; and a final scaling step is introduced to ensure that the returned matrix has unit diagonal. Potential difficulties caused by rounding errors in the Armijo line search are avoided by altering the step selection strategy. These and other improvements lead to a significant speedup over the original algorithm and allow the solution of problems of dimension a few thousand in a few tens of minutes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.