Abstract

To date, no drug has been proven to be neuroprotective or disease-modifying for Parkinson's disease (PD) in clinical trials. Here, we aimed to assess preclinical evidence of Ginsenosides-Rg1 (G-Rg1), a potential neuroprotectant, for experimental PD and its possible mechanisms. Eligible studies were identified by searching six electronic databases from their inception to August 2016. Twenty-five eligible studies involving 516 animals were identified. The quality score of these studies ranged from 3 to 7. Compared with the control group, two out of the 12 studies of MPTP-induced PD showed significant effects of G-Rg1 for improving the rotarod test (P < 0.01), two studies for improving the swim-score values (P < 0.01), six studies for improving the level of TH protein expression (P < 0.01), and two studies for increasing the expression of TH mRNA in the substantia nigra of mice (P < 0.01). The studies reported that G-Rg1 exerted potential neuroprotective effects on PD model through different mechanisms as antineuroinflammatory activities (n = 10), antioxidant stress (n = 3), and antiapoptosis (n = 11). In conclusion, G-Rg1 exerted potential neuroprotective functions against PD largely by antineuroinflammatory, antioxidative, and antiapoptotic effects. G-Rg1 as a promising neuroprotectant for PD needs further confirmation by clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.