Abstract

The purpose of this study was to establish and validate an animal brain ischemia model in the recovery and sequela stages. A middle cerebral artery occlusion/reperfusion (MCAO/R) model in male Sprague-Dawley rats was chosen. By changing the rat's weight (260-330 g), the thread bolt type (2636/2838/3040/3043) and the brain infarct time (2-3 h), a higher Longa's score, a larger infarct volume and a greater model success ratio were screened using the Longa's score and TTC staining. The optimum model condition (300 g, 3040 thread bolt, 3 h brain infarct time) was acquired and used in a 1-90 day observation period after reperfusion via assessment of sensorimotor functions and infarct volume. At these conditions, the bilateral asymmetry test had a significant difference from 1 to 90 days, and the grid-walking test had a significant difference from 1 to 60 days; both differences could be a suitable sensorimotor functional test. Thus, the most appropriate condition of a novel rat model in the recovery and sequela stages of brain ischemia was found: 300 g rats that underwent MCAO with a 3040 thread bolt for a 3 h brain infarct and then reperfused. The appropriate sensorimotor functional tests were a bilateral asymmetry test and a grid-walking test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call