Abstract

In Experiment E155 at the Stanford Linear Accelerator Center, the spin dependent structure function g{sub 1}(x,Q{sup 2}) was measured for both the proton and deuteron. This was accomplished by scattering 48.3 GeV highly polarized electrons (0.813 {+-} 0.020) off polarized {sup 15}NH{sub 3} (proton) and {sup 6}LiD (deuteron) targets. Data were collected in March and April of 1997 using three fixed angle, momentum analyzing spectrometers centered at 2.75{sup o}, 5.5{sup o}, and 10.5{sup o}. This enabled a kinematic coverage of 0.01 < x < 0.9 and 1 GeV{sup 2} < Q{sup 2} < 40 GeV{sup 2}. At an average Q{sup 2} of 5 GeV{sup 2}, the integrals in the measured region were f{sub 0.014}{sup 0.9}g{sub 1}(x)dx = 0.119 {+-} 0.002(stat.) {+-} 0.009(syst.) for the proton and 0.043 {+-} 0.003(stat.) {+-} 0.003(syst.) for the deuteron. Using a perturbative QCD analysis which included a global data set, the results were found to be consistent with the Bjorken Sum Rule. Asymmetry measurements also were made using photoproduced hadrons. Data were collected concurrently with the g{sub 1} data. For the proton, the asymmetries were small and non-zero. The deuteron measurements were consistent with zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.