Abstract

This article considers the problem of accurately modeling the kinematic state transition of an Unmanned Aerial Vehicle (UAV). The full 3D range of motion is accurately captured using compact equations for position update derived in this work. This derivation makes use of the independence of the rotation and translation components of a 3D rigid motion. The proposed motion model is transparent to the sensors used in the system; it is particularly useful in GPS-denied environments and can contribute to different aspects of robust navigation, such as accurate state estimation, sensor fault tolerance and sensor bias estimation. Experimental results comparing the performance of the proposed kinematic model with those typically used demonstrate its superiority.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call