Abstract

Over recent years, eutectic high-entropy alloys (EHEAs) have intrigued substantial research enthusiasms due to their good castability as well as balanced strength–ductility synergy. In this study, a bulk cast Al19.25Co18.86Fe18.36Ni43.53 EHEA is developed with fine in-situ lamellar eutectics. The eutectics comprise alternating ordered face-centered-cubic (L12) and ordered body-centered-cubic (B2) phases with semi-coherent interfaces. The resulting microstructure resembles that of most reported as-cast EHEAs, but the B2 lamellae are devoid of nano-precipitates because of the Cr-element removal in current tailored eutectic composition. Surprisingly, the B2 lamellae still feature much higher deformation resistance than the L12 lamellae, so that less lattice defects are detected in the B2 lamellae until the fracture. More interestingly, in the L12 lamellae we identify a dynamic microstructure refinement that correlates to extraordinary strain hardening in tension. The precipitate-free EHEA consequently shows excellent tensile ductility of ∼10 % and high ultimate strength up to ∼956 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.