Abstract

Precise control of neuronal migration is essential for the development of the neocortex. However, the molecular mechanisms underlying neuronal migration remain largely unknown. Here we identified helix-loop-helix transcription factor Ebf3 as a Prdm8 target gene, and found that Ebf3 is a key regulator of neuronal migration via multipolar-to-bipolar transition. Ebf3 knockdown cells exhibited severe defects in the formation of leading processes and an inhibited shift to the locomotion mode. Moreover, we found that Ebf3 knockdown represses NeuroD1 transcription, and NeuroD1 overexpression partially rescued migration defects in Ebf3 knockdown cells. Our findings highlight the critical role of Ebf3 in multipolar-to-bipolar transition via positive feedback regulation of NeuroD1 in the developing neocortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.