Abstract

Lower oxygen vacancy formation energy is one of the requirements for air electrode materials in solid oxide cells applications. We introduce a transfer learning approach for oxygen vacancy formation energy prediction for some ABO perovskites from a two-species-doped system to four-species-doped system. For that, an artificial neural network is used. Considering a two-species-doping training data set, predictive models are trained for the determination of the oxygen vacancy formation energy. To predict the oxygen vacancy formation energy of four-species-doped perovskites, a formally similar feature space is defined. The transferability of predictive models between physically similar but distinct data sets, i.e., training and testing data sets, is validated by further statistical analysis on residual distributions. The proposed approach is a valuable supporting tool for the search for novel energy materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.