Abstract
We consider statistical inference for regression when data are grouped into clus- ters, with regression model errors independent across clusters but correlated within clusters. Examples include data on individuals with clustering on village or region or other category such as industry, and state-year dierences-in-dierences studies with clustering on state. In such settings default standard errors can greatly overstate es- timator precision. Instead, if the number of clusters is large, statistical inference after OLS should be based on cluster-robust standard errors. We outline the basic method as well as many complications that can arise in practice. These include cluster-specic �xed eects, few clusters, multi-way clustering, and estimators other than OLS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.