Abstract

In recent years, aerial manipulators consist of unmanned aerial vehicles and robotic manipulators have been widely utilized in aerial operations. The complex dynamic coupling effects between unmanned aerial vehicles and robotic manipulators will bring some issues to the motion control. Therefore, the article proposes a new control scheme for aerial manipulators. The proposed method includes three elements, that is, time-delay estimation, backstepping design, and nonsingular terminal sliding mode. The time-delay estimation technique is adopted to estimate the complex system dynamics and to bring a model-free feature of the system. With the backstepping design, the proposed control strategy can ensure the asymptotic stability of the closed-loop system by recursive procedure. To deal with the unmodelling dynamics and disturbances, and to assure finite-time convergence of the system states, the nonsingular terminal sliding mode is adopted. By combining three elements, the tracking performance of aerial manipulators is improved under unmodelling dynamics and disturbances. Global stability of closed-loop control system is analyzed using Lyapunov stability theory. Finally, comparative simulations are conducted, and the results show that the proposed controller has better performance than a conventional proportional–derivative controller or a nonsingular terminal sliding mode controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call