Abstract

Much attention has been recently focused on realizing, by chemical treatment, an artificial superhydrophobic surface with elevated roughness in order to achieve both self cleaning and antireflective effects because superhydrophobic surface with surface functionalization is believed to be effective for the self cleaning effect, mimicking a lotus leaf. Various hydrophobic, hydrophilic, superhydrophobic, and superhydrophilic glasses are evaluated by monitoring the variation of water contact angle (CA), optical transmittance, and photovoltaic performance under outdoor conditions for 12 weeks. Our results show a nanopatterned superhydrophilic glass without surface chemical treatment exhibits more efficient self cleaning and antireflective effects, leading to only 1.39% of drop of solar cell efficiency during an outdoor test for 12 weeks, while the solar cells with bare glass packaging and fluorinated superhydrophobic packaging show 7.79% and 2.62% of efficiency drop, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.