Abstract
Cooperative spectrum sensing (CSS) in cognitive radio networks conducts cooperation among sensing users to jointly sense the sparse spectrum and utilize available spectrums. Greedy multiple measurement vectors (MMVs) algorithm in the context of compressed sensing can ideally model the wideband CSS scenario to efficiently solve the support detection problem for identification of occupied channels. Actually, the number of sparsity is unknown, and most of greedy algorithms for MMVs lack for a (robust) stopping criterion of determining when the greedy algorithm should terminate. In this paper, we analyze and derive oracle stopping bounds for greedy MMVs algorithms without depending on prior information such as sparsity. Moreover, we introduce a practical subspace MMVs greedy algorithm that extends from a subspace-based sparse recovery method to a more practical setting, in which no prior information are required. Extensive simulations confirm the feasibility of the proposed stopping criteria and our sparse recovery algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.