Abstract
Approximate Matrix Multiplication (AMM) has emerged as a useful and computationally inexpensive substitute for actual multiplication of large matrices. Randomized as well as deterministic solutions to AMM were provided in the past. The latest work provides a deterministic algorithm that solves AMM more accurately than the other works. It is a streaming algorithm that is both fast and accurate. But, it is less robust to noise and is also liable to have less than optimal performance in the presence of concept drift in the input matrices. We propose an algorithm that is more accurate, robust to noise, invariant to concept drift in the data, while having almost the same running time as the state-of-the-art algorithm. We also prove that theoretical guarantees exist for the proposed algorithm. An empirical performance improvement of up to 90% is obtained over the previous algorithm. We also propose a general framework for parallelizing the proposed algorithm. The two parallelized versions of the algorithm achieve up to 1.9x and 3.6x speedups over the original version of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of King Saud University - Computer and Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.