Abstract

A current challenge for many Bayesian analyses is determining when to terminate high-dimensional Markov chain Monte Carlo simulations. To this end, we propose using an automated sequential stopping procedure that terminates the simulation when the computational uncertainty is small relative to the posterior uncertainty. Further, we show this stopping rule is equivalent to stopping when the effective sample size is sufficiently large. Such a stopping rule has previously been shown to work well in settings with posteriors of moderate dimension. In this article, we illustrate its utility in high-dimensional simulations while overcoming some current computational issues. As examples, we consider two complex Bayesian analyses on spatially and temporally correlated datasets. The first involves a dynamic space-time model on weather station data and the second a spatial variable selection model on fMRI brain imaging data. Our results show the sequential stopping rule is easy to implement, provides uncertainty estimates, and performs well in high-dimensional settings. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.