Abstract

Current paper reports the fabrication of an exceptional and cost-effective electrochemical nanosensor for the ultra-sensitive determination of Hydroquinone (HQ) using MoO3 nanostructures. The characterization through versatile analytical techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray diffractogram (XRD), Atomic Force Microscopy (AFM) and Zeta sizer-potential (ZS-P) reveals that engineered Molybdenum oxide (MoO3) nanostructures are highly crystalline in nature, phase purity homogeneity and size around 20 nm, respectively. The MoO3 nanostructures were applied as electro nanosensor for the effective determination of HQ using Cyclic voltammetry. For efficient analysis of HQ, the bare glassy carbon electrode was modified with synthesized MoO3 NS as sensitive sensing nanoprobe. HQ was sensitively determined at scan rate of 70 mV s−1, borate supporting electrolyte with pH 8, and potential (V) range (−0.4 to 0.4 V vs Ag/AgCl). The linear dynamic range of Molybdenum oxide/Glassy Carbon Electrode (MoO3/GCE) for HQ was kept from 10–210 μM and the limit of detection was calculated to be 0.00126 μM respectively. The developed sensor exhibited outstanding sensing characteristics in terms of high sensitivity, exceptional electro-catalytic properties, low cost and reliable determination route for HQ in different cosmetic products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call