Abstract

Relating an arm Cartesian space to joint space and arm dynamics, is an essential issue in arm control that has been given a substantial attention by number of researches. Arm inverse kinematic, is a nonlinear relation, and a closed form solution is not a straight forward, or does not even always exist. This research is presenting a practical use of Neuro-Fuzzy system to solve inverse kinematics problem that used for a two links robotic arm. The concept here is to learn kinematics relations for a robotic arm system. This is to learn and map its environment and remembers what it learnt. For learning the inverse kinematics, Neuro-fuzzy needs information about coordinates, joint angles and actuator position. Information flow needed for the training for a Neuro-fuzzy network is slow and difficult to get by measuring the real structure. Desired Cartesian coordinates are given as input to a Neuro-fuzzy that returns actuator positions. Hence to express them as linguistics fuzzy rules. Neuro-fuzzy system is to generalize and produce an appropriate output. The assembled system has been equipped with C ++ interface routines, as being executed from a MATLAB

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.