Abstract

Abstract A major concern with water injection in offshore oil reservoir is the water breakthrough. The formation heterogeneity is the main reason for it. In order to evaluate the water injection efficiency, a visualized 2-D experiment was carried out to obtain the distribution law of injected water and the variation of injection parameters in homogeneous and heterogeneous formation. In addition, a coupled wellbore/reservoir model was established by applying microelement method, superposition principle and imaging. This model considers the formation heterogeneity and pressure drop caused by wellbore friction. The visualized 2-D sand filling displacement experiment indicates that the injection rate at the horizontal well heel is greater than that at the toe and the injection front is more irregular in heterogeneous formation. The injection rate and injection pressure distribution along the horizontal well are obtained analytically based on the proposed model, the results show that the injection rate at the two sides of the wellbore is much higher than that in the middle when the formation is homogeneous and the wellbore is infinite-conductive. In this case, the injection rate curve along horizontal well shows a "U" shaped distribution. When a finite-conductive horizontal wellbore is considered, the injection rate at the heel of the wellbore is higher than that of the toe, although the injection rate curve along horizontal well also exhibits a deformed "U" shape distribution. For the formation heterogeneities along the horizontal wellbore, the injection rate distribution curve is not continuous anymore, but a deformed "U" shape is also observed for each wellbore segment. At last, the established model was applied to an ultra-heterogeneous offshore reservoir. It is concluded that the profile control effect of typical well is obvious. The results of this study are of great significance for the calculation of the injection rate profile and improving the water injection efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.