Abstract

ABSTRACTShip–ship collisions continue to occur regardless of efforts to prevent them. The collisions involve highly nonlinear characteristics associated with structural crashworthiness, including crushing and fracture as well as buckling and plastic collapse. When applying nonlinear finite element analysis (NLFEA) to solve these problems, a reliable critical fracture strain accounting for strain-rate effects due to collision speed must be implemented. This study proposes a practical method to estimate the dynamic fracture strain to be used for the structural crashworthiness analysis associated with the collisions. For this purpose, the strain-rate characteristics in struck ship were investigated by NLFEA, in which the striking vessel was assigned various velocities in the range of practical ship speeds. Based on computations, an empirical formula was developed to calculate the strain rate at a given collision speed, allowing for a practical estimation of the dynamic fracture strain. The formula is validated by a comparison with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.