Abstract

The recent development of massively parallel sequencing technology has allowed the creation of comprehensive catalogs of genetic variation. However, due to the relatively high sequencing error rate for short read sequence data, sophisticated analysis methods are required to obtain high-quality variant calls. Here, we developed a probabilistic multinomial method for the detection of single nucleotide variants (SNVs) as well as short insertions and deletions (indels) in whole genome sequencing (WGS) and whole exome sequencing (WES) data for single sample calling. Evaluation with DNA genotyping arrays revealed a concordance rate of 99.98% for WGS calls and 99.99% for WES calls. Sanger sequencing of the discordant calls determined the false positive and false negative rates for the WGS (0.0068% and 0.17%) and WES (0.0036% and 0.0084%) datasets. Furthermore, short indels were identified with high accuracy (WGS: 94.7%, WES: 97.3%). We believe our method can contribute to the greater understanding of human diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.