Abstract

The Caribbean Sea provides significant ecosystem services to the livelihood and well-being of countries in the region. Protection of the marine ecosystem requires policy on coastal water quality that considers ecologically-relevant thresholds and has a scientific foundation linking land-based discharges with seawater quality. This study demonstrates a practical method for setting local-scale coastal water quality targets by applying this approach to Cartagena Bay, Colombia, and setting targets for end-of-river suspended sediment loads to mitigate offshore coral reef turbidity. This approach considers reef thresholds for suspended sediments and applies a field-calibrated 3D hydrodynamic-water quality model (MOHID) to link the marine thresholds to fluvial loads. Monitoring data showed that suspended sediments were consistently above the coral reef ecosystem threshold of 10 mg/l, and the model adequately reproduced field observations. It was shown that ecosystem thresholds could be maintained within the extent of the bay by reducing suspended sediment loads in the Dique Canal from current load estimates of 6.4 × 103 t/d (rainy season) and 4.3 × 103 t/d (transitional season) to target loads of 500–700 t/d, representing reductions of ~80–90%. These substantial reductions reflect ongoing issues in the Magdalena watershed which has experienced severe erosional conditions and intense deforestation over the past four decades. The presented method is practical for countries without access to long-term datasets, and could be applied to other parameters or discharge types. The method is particularly beneficial for developing site-specific targets, which are needed considering the natural and anthropogenic variability between different coastal zones and water bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.