Abstract
The Type I error rates and powers of three recent tests for analyzing nonorthogonal factorial designs under departures from the assumptions of homogeneity and normality were evaluated using Monte Carlo simulation. Specifically, this work compared the performance of the modified Brown-Forsythe procedure, the generalization of Box's method proposed by Brunner, Dette, and Munk, and the mixed-model procedure adjusted by the Kenward-Roger solution available in the SAS statistical package. With regard to robustness, the three approaches adequately controlled Type I error when the data were generated from symmetric distributions; however, this study's results indicate that, when the data were extracted from asymmetric distributions, the modified Brown-Forsythe approach controlled the Type I error slightly better than the other procedures. With regard to sensitivity, the higher power rates were obtained when the analyses were done with the MIXED procedure of the SAS program. Furthermore, results also identified that, when the data were generated from symmetric distributions, little power was sacrificed by using the generalization of Box's method in place of the modified Brown-Forsythe procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.