Abstract

This brief addresses the leader–follower (L-F) tracking control problem for multiple nonholonomic mobile robots in unknown obstacle environments. Unlike most of the existing approaches investigating similar problems, a series of practical issues is considered and tackled in the proposed scheme. For leader tracking, a class of bounded barrier functions are employed to formulate distance and bearing angle constraints introduced by sensor limitations and L-F collision avoidance requirement. To ensure robot safety in unknown environments, a multiregion obstacle avoidance algorithm is proposed which prioritizes different control objectives in different regions. This brief also studies the leader-loss situation, which may be caused by illumination variation, motion blurring, or visual occlusion by obstacles. To deal with this case, a fault-tolerant strategy is designed to drive $F$ to the place where $L$ was lost immediately. The control scheme proposed in the brief is primarily designed for a communication-free environment where only local state measurements are available. Furthermore, it has control input constraints explicitly taken into account. Real robot experiment has been performed to validate the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.