Abstract

BackgroundTranscriptome sequencing has become a method of choice for evolutionary studies in microbial eukaryotes due to low cost and minimal sample requirements. Transcriptome data has been extensively used in phylogenomic studies to infer ancient evolutionary histories. However, its utility in studying cryptic species diversity is not well explored. An empirical investigation was conducted to test the applicability of transcriptome data in resolving two major types of discordances at lower taxonomic levels. These include cases where species have the same morphology but different genetics (cryptic species) and species of different morphologies but have the same genetics. We built a species comparison bioinformatic pipeline that takes into account the nature of transcriptome data in amoeboid microbes exemplifying such discordances.ResultOur analyses of known or suspected cryptic species yielded consistent results regardless of the methods of culturing, RNA collection or sequencing. Over 95% of the single copy genes analyzed in samples of the same species sequenced using different methods and cryptic species had intra- and interspecific divergences below 2%. Only a minority of groups (2.91–4.87%) had high distances exceeding 2% in these taxa, which was likely caused by low data quality. This pattern was also observed in suspected genetically similar species with different morphologies. Transcriptome data consistently delineated all taxa above species level, including cryptically diverse species. Using our approach we were able to resolve cryptic species problems, uncover misidentification and discover new species. We also identified several potential barcode markers with varying evolutionary rates that can be used in lineages with different evolutionary histories.ConclusionOur findings demonstrate that transcriptome data is appropriate for understanding cryptic species diversity in microbial eukaryotes.

Highlights

  • Transcriptome sequencing has become a method of choice for evolutionary studies in microbial eukaryotes due to low cost and minimal sample requirements

  • Our findings demonstrate that transcriptome data is appropriate for understanding cryptic species diversity in microbial eukaryotes

  • Probing the nature of transcriptome data using a bioinformatic pipeline We built a bioinformatic pipeline for comparative analysis of genomic and transcriptomic data from multiple species

Read more

Summary

Introduction

Transcriptome sequencing has become a method of choice for evolutionary studies in microbial eukaryotes due to low cost and minimal sample requirements. An empirical investigation was conducted to test the applicability of transcriptome data in resolving two major types of discordances at lower taxonomic levels. These include cases where species have the same morphology but different genetics (cryptic species) and species of different morphologies but have the same genetics. More recent developments in high-throughput sequencing (HTS) techniques are allowing generation of large amounts of genetic data from non-model organisms through alternative (reduced genomic) approaches (e.g. transcriptomics, restriction site-associated DNA (RAD), metagenomics). The large amounts of genetic data generated from HTS of previously neglected microbial lineages are contributing to our understanding of the eukaryotic tree of life [11,12,13,14].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call