Abstract
We discuss risk, preference and valuation in classical economics, which led academics to develop a theory of market prices, resulting in the general equilibrium theories. However, in practice, the decision process does not follow that theory since the qualitative aspect coming from human decision making process is missing. Further, a large number of studies in empirical finance showed that financial assets exhibit trends or cycles, resulting in persistent inefficiencies in the market, that can be exploited. The uneven assimilation of information emphasised the multifractal nature of the capital markets, recognising complexity. New theories to explain financial markets developed, among which is a multitude of interacting agents forming a complex system characterised by a high level of uncertainty. Recently, with the increased availability of data, econophysics emerged as a mix of physical sciences and economics to get the best of both world, in view of analysing more deeply assets' predictability. For instance, data mining and machine learning methodologies provide a range of general techniques for classification, prediction, and optimisation of structured and unstructured data. Using these techniques, one can describe financial markets through degrees of freedom which may be both qualitative and quantitative in nature. In this book we detail how the growing use of quantitative methods changed finance and investment theory. The most significant benefit being the power of automation, enforcing a systematic investment approach and a structured and unified framework. We present in a chronological order the necessary steps to identify trading signals, build quantitative strategies, assess expected returns, measure and score strategies, and allocate portfolios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.