Abstract

This tutorial introduces the theoretical and experimental basics of electromagnetically induced transparency (EIT) in thermal alkali vapors. We first give a brief phenomenological description of EIT in simple three-level systems of stationary atoms and derive analytical expressions for optical absorption and dispersion under EIT conditions. Then we focus on how the thermal motion of atoms affects various parameters of the EIT system. Specifically, we analyze the Doppler broadening of optical transitions, ballistic versus diffusive atomic motion in a limited-volume interaction region, and collisional depopulation and decoherence. Finally, we discuss the common trade-offs important for optimizing an EIT experiment and give a brief ‘walk-through’ of a typical EIT experimental setup. We conclude with a brief overview of current and potential EIT applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.