Abstract

Electroencephalography (EEG) has been widely adopted by the developmental cognitive neuroscience community, but the application of machine learning (ML) in this domain lags behind adult EEG studies. Applying ML to infant data is particularly challenging due to the low number of trials, low signal-to-noise ratio, high inter-subject variability, and high inter-trial variability. Here, we provide a step-by-step tutorial on how to apply ML to classify cognitive states in infants. We describe the type of brain attributes that are widely used for EEG classification and also introduce a Riemannian geometry based approach for deriving connectivity estimates that account for inter-trial and inter-subject variability. We present pipelines for learning classifiers using trials from a single infant and from multiple infants, and demonstrate the application of these pipelines on a standard infant EEG dataset of forty 12-month-old infants collected under an auditory oddball paradigm. While we classify perceptual states induced by frequent versus rare stimuli, the presented pipelines can be easily adapted for other experimental designs and stimuli using the associated code that we have made publicly available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.