Abstract
Cost-per-action (CPA), or cost-per-acquisition, has become the primary campaign performance objective in online advertising industry. As a result, accurate conversion rate (CVR) prediction is crucial for any real-time bidding (RTB) platform. However, CVR prediction is quite challenging due to several factors, including extremely sparse conversions, delayed feedback, attribution gaps between the platform and the third party, etc. In order to tackle these challenges, we proposed a practical framework that has been successfully deployed on Yahoo! BrightRoll, one of the largest RTB ad buying platforms. In this paper, we first show that over-prediction and the resulted over-bidding are fundamental challenges for CPA campaigns in a real RTB environment. We then propose a safe prediction framework with conversion attribution adjustment to handle over-predictions and to further alleviate over-bidding at different levels. At last, we illustrate both offline and online experimental results to demonstrate the effectiveness of the framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.