Abstract

We present a practical finite difference scheme for the incompressible Navier–Stokes equation on curved surfaces in three-dimensional space. In the proposed method, the curved surface is embedded in a narrow band domain and the governing equation is extended to the narrow band domain. We use the standard seven-point stencil for the Laplace operator instead of a discrete Laplacian–Beltrami operator by using the closet point method and pseudo-Neumann boundary condition. The well-known projection method is used to solve the incompressible Navier–Stokes equation in the narrow band domain. To make the velocity field be parallel to the surface, a velocity correction step is used. Various numerical experiments, such as the divergence-free test, the convergence rate, and the energy dissipation, are performed on curved surfaces, which demonstrated that our proposed method is robust and practical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.