Abstract

Preference-based learning to rank (LTR) is a model that learns the underlying pairwise preference with soft binary classification, and then ranks test instances based on pairwise preference predictions. The model can be viewed as an alternative to the popular score-based LTR model, which learns a scoring function and ranks test instances based on their scores directly. Many existing works on preference-based LTR address the step of ranking test instances as the problem of weighted minimum feedback arcset on tournament graph. The problem is somehow NP-hard to solve and existing algorithms cannot efficiently produce a decent solution. We propose a practical algorithm to speed up the ranking step while maintaining ranking accuracy. The algorithm employs a divide-and-conquer strategy that mimics merge-sort, and its time complexity is relatively low when compared to other preference-based LTR algorithms. Empirical results demonstrate that the accuracy of the proposed algorithm is competitive to state-of-the-art score-based LTR algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.