Abstract

In this article, to estimate the battery state of health (SOH) under realistic electric vehicle (EV) conditions, a robust and efficient data-driven algorithm is developed and validated through comprehensive battery life testing. More than 50 state-of-the-art EV battery cells have been tested under a variety of cycling conditions with different charging protocols, dynamic driving cycles, voltage ranges, pulse rates, and temperatures. Some of the cells have also been tested under a combination of cycling and storage conditions, constant current and multistep charging, and a periodic temperature variation that mimics real life conditions. Only partial data (voltage, current, and temperature) within a narrow state-of-charge range under a dynamic driving condition are required to extract the health indicators. A neural network is trained to find the mapping between the health features and the battery SOH. The life test data are divided into three groups. The first dataset (≈55% of data) is used for training and initial validation and testing, whereas the second and third datasets (≈45% of data) are entirely used for the final validation and testing to minimize the network overfitting. The results show that the SOH estimation root-mean-squared error for all datasets is less than 0.9%, signifying the fidelity and reliability of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.