Abstract
Ciphertext-policy attribute-based encryption can provide fine-grained access control and secure data sharing to the data users in cloud computing. However, the encryption/decryption efficiency of existing schemes can be further improved when encrypting a large document collection. In this paper, we propose a practical Ciphertext-Policy Attribute-Based Hierarchical document collection Encryption scheme named CP-ABHE. By practical, we mean that CP-ABHE is more efficient in both computation and storage space without sacrificing data security. In CP-ABHE, we first construct a set of integrated access trees based on the documents’ attribute sets. We employ the greedy strategy to build the trees incrementally and grow the trees dynamically by combining the small ones. Then, all the documents on an integrated access tree are encrypted together. Different to existing schemes, the leaves in different access trees with the same attribute share the same secret number, which is employed to encrypt the documents. This greatly improves the performance of CP-ABHE. The security of our scheme is theoretically proved based on the decisional bilinear Diffie–Hellman assumption. The simulation results illustrate that CP-ABHE performs very well in terms of security, efficiency, and the storage size of the ciphertext.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.