Abstract

The present paper deals with a shop floor applicable mathematical model for deposition rate during twin-wire submerged arc welding. The salient features of this model are (1) instead of melting rate, as modeled during past investigations, it quantifies the deposition rate, which is the actual outcome of the process and always remains smaller than the melting rate because of evaporation or spatters losses and (2) it estimates electrode extension in order to predict the deposition rate which makes the proposed model more practical than the models constituted with the help of experimental measurement of electrode extension. The model is more scientific than the simplified models where contact tube to work-piece distance has been considered as the electrode extension. A critical review of the relevant past investigation is given and a mathematical model is developed for deposition rate during the twin-wire welding with both the polarities, i.e., direct current electrode positive and direct current electrode negative. The model is calibrated using the results of 200 experimental runs and it is found to be very accurate with very high coefficient of regression and admissible standard error. The developed model is further validated with extra experimental runs. The practicality of the considered approach for prediction of deposition rate can further be used in future research for other consumable arc welding processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.