Abstract

BackgroundMain scope of the EU and FDA regulations is to establish a classification criterion for advanced therapy medicinal products (ATMP). Regulations require that ATMPs must be prepared under good manufacturing practice (GMP). We have validated a commercial system for the determination of bacterial endotoxins in compliance with EU Pharmacopoeia 2.6.14, the sterility testing in compliance with EU Pharmacopoeia 2.6.1 and a potency assay in an ATMP constituted of mononucleated cells used in cardiac regeneration.MethodsFor the potency assay, cells were placed in the upper part of a modified Boyden chamber containing Endocult Basal Medium with supplements and transmigrated cells were scored. The invasion index was expressed as the ratio between the numbers of invading cells relative to cell migration through a control insert membrane.For endotoxins, we used a commercially available system based on the kinetic chromogenic LAL-test. Validation of sterility was performed by direct inoculation of TSB and FTM media with the cell product following Eu Ph 2.6.1 guideline.Results and discussionThe calculated MVD and endotoxin limit were 780× and 39 EU/ml respectively. The 1:10 and 1:100 dilutions were selected for the validation. For sterility, all the FTM cultures were positive after 3 days. For TSB cultures, Mycetes and B. subtilis were positive after 5 and 3 days respectively. The detection limit was 1-10 colonies.A total of four invasion assay were performed: the calculated invasion index was 28.89 ± 16.82% (mean ± SD).ConclusionWe have validated a strategy for endotoxin, sterility and potency testing in an ATMP used in cardiac regeneration. Unlike pharmaceutical products, many stem-cell-based products may originate in hospitals where personnel are unfamiliar with the applicable regulations. As new ATMPs are developed, the regulatory framework is likely to evolve. Meanwhile, existing regulations provide an appropriate structure for ensuring the safety and efficacy of the next generation of ATMPs. Personnel must be adequately trained on relevant methods and their application to stem-cell-based products.

Highlights

  • The European Union (EU) regulation on advanced therapy medicinal products [1] (ATMP) is entered into force in all European Member States on December 30, 2008, and Food and Drug Administration (FDA) recently promulgated regulations on human cells, tissues, and cellular and tissue-based products [2] issuing an appropriate regulatory structure for the wide range of stem-cell-based products that may be developed to regenerate damaged tissues

  • We have validated a strategy for endotoxin, sterility and potency testing in an ATMP used in cardiac regeneration

  • Among the ATMPs, bone marrow-derived mononuclear cells (BM-MNC), widely used in cellular therapy protocols, include several populations of stem cells able to restore vascularization or to transdifferentiate into functional cardiac cells: hematopoietic stem cells (HSC) which give rise to all mature lineages of blood [4], mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) which can be mobilized in the peripheral blood and give rise to mature endothelial cells in blood vessels [5]

Read more

Summary

Introduction

The European Union (EU) regulation on advanced therapy medicinal products [1] (ATMP) is entered into force in all European Member States on December 30, 2008, and Food and Drug Administration (FDA) recently promulgated regulations on human cells, tissues, and cellular and tissue-based products [2] issuing an appropriate regulatory structure for the wide range of stem-cell-based products that may be developed to regenerate damaged tissues. In particular the European Regulation makes reference to and is in coherence with the 2004/23/EC directive on donation, procurement and testing of human cells and tissues and with directive 2002/98/EC on human blood and blood components This means that any use of human cells has to be in compliance with the quality requirements therein described. Among the ATMPs, bone marrow-derived mononuclear cells (BM-MNC), widely used in cellular therapy protocols, include several populations of stem cells able to restore vascularization or to transdifferentiate into functional cardiac cells: hematopoietic stem cells (HSC) which give rise to all mature lineages of blood [4], mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) which can be mobilized in the peripheral blood and give rise to mature endothelial cells in blood vessels [5]. We have validated a commercial system for the determination of bacterial endotoxins in compliance with EU Pharmacopoeia 2.6.14, the sterility testing in compliance with EU Pharmacopoeia 2.6.1 and a potency assay in an ATMP constituted of mononucleated cells used in cardiac regeneration

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call