Abstract

Brake wear particles are generated through frictional contact between the brake disc or brake drum and the brake pads. Some of these particles may be released into the atmosphere, contributing to airborne fine particulate matter (PM2.5). In this study, an onboard system was developed and tested to measure brake wear particles emitted under real-world driving conditions. Brake wear particles were extracted from a fixed volume enclosure surrounding the pad and disc installed on the front wheel of a light-duty vehicle. Real-time data on size distribution, number concentration, PM2.5 mass, and the contribution of semi-volatiles were obtained via a suite of instruments sub-sampling from the constant volume sampler (CVS) dilution tunnel. Repeat measurements of brake particles were obtained from a 42 min bespoke drive cycle on a chassis dynamometer, from on-road tests in an urban area, and from braking events on a test track. The results showed that particle emissions coincided with braking events, with mass emissions around 1 mg/km/brake during on-road driving. Particle number emissions of low volatility particles were between 2 and 5 × 109 particles/km/brake. The highest emissions were observed under more aggressive braking. The project successfully developed a proof-of-principle measurement system for brake wear emissions from transient vehicle operation. The system shows good repeatability for stable particle metrics, such as non-volatile particle number (PN) from the solid particle counting system (SPCS), and allows for progression to a second phase of work where emissions differences between commercially available brake system components will be assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.