Abstract

It is well-known that under conditions of fast electronic equilibration and weak nonadiabaticity, nonadiabatic effects induced by electron-hole pair excitations can be partly incorporated through a frictional force. However, ab initio computation of the electronic friction tensor suffers from numerical instability and usually demands a convergence check. In this study, we present an efficient and accurate interpolation method for computing the electronic friction tensor in a nearly black-box manner as appropriate for molecular dynamics. In almost all cases, our method agrees quite well with the exact friction tensor which is available for several quadratic Hamiltonians. As such, we outperform more conventional approaches that are based on the introduction of a broadening parameter. Future work will implement this interpolation approach within ab initio software packages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.