Abstract

There has been a high rate of false alarms for the critical electrocardiogram (ECG) arrhythmia events in intensive care units (ICUs), from which the ‘crying-wolf’ syndrome may be resulted and patient safety may be jeopardized. This article presents an algorithm to reduce false critical arrhythmia alarms using arterial blood pressure (ABP) and/or photoplethysmogram (PPG) waveform features. We established long duration reference alarm datasets which consist of 573 ICU waveform-alarm records (283 for development set and 290 for test set) with total length of 551 patent days. Each record has continuous recordings of ECGs, ABP and/or PPG signals and contains one or multiple critical ECG alarms. The average length of a record is 23 h. There are totally 2408 critical ECG alarms (1414 in the development set and 994 in the test set), each of which was manually annotated by experts. The algorithm extracts ABP/PPG pulse features on a beat-by-beat basis. For each pulse, five event feature indicators (EFIs), which correspond to the five critical ECG alarms, are generated. At the time of a critical ECG alarm, the corresponding EFI values of those ABP/PPG pulses around the alarm time are checked for adjudicating (accept/reject) this alarm. The algorithm retains all (100%) the true alarms and significantly reduces the false alarms. Our results suggest that the algorithm is effective and practical on account of its real-time dynamic processing mechanism and computational efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call