Abstract

An operational algorithm is proposed to retrieve soil and foliage component temperatures over heterogeneous land surface based on the analysis of bi-angular multi-spectral observations made by ATSR-2. Firstly, on the basis of the radiative transfer theory in a canopy, a model is developed to infer the two component temperatures using six channels of ATSR-2. Four visible, near-infrared and short wave infrared channels are used to estimate the fractional vegetation cover within a pixel. A split-window method is developed to eliminate the atmospheric effects on the two thermal channels. An advanced method using all four visible, near-infrared and short wave channel measurements at two view angles is developed to perform atmospheric corrections in those channels allowing simultaneous retrieval of aerosol opacity and land surface bi-directional reflectance. Secondly, several case studies are undertaken with ATSR-2 data. The results indicate that both foliage and soil temperatures can be retrieved from bi-angular surface temperatures measurements. Finally, limitations and uncertainties in retrieving component temperatures using the present algorithm are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.