Abstract
Nonsinusoidal voltage waveforms are quite common in high frequency power conversion magnetics. Low frequency nonsinusoidal waveforms are also common in AC motor applications with waveforms such as PWM and six-step. Previous attempts to model these losses, based on Steinmetz equation, can work only in a limited range of frequencies, flux density excitations and waveforms. In this paper we present a very practical, yet very general and accurate model, for core loss calculations in case of nonsinusoidal voltage waveforms. We show the model is equally applicable to low and high frequencies, metallic as well as nonmetallic (e.g. ferrites) core materials, by comparing the model prediction with measured data for various waveforms, frequencies, and flux densities. The model can be used for the design of high frequency transformers and inductors for use in switched mode power supplies. The model can also be used for AC motors where it is hard to estimate `Derating Factor' and to avoid uncontrolled temperature rise
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.