Abstract
This paper presents a practical two-dimensional (2D)/three-dimensional (3D) simultaneous localization and mapping (SLAM) algorithm using directional features for ordinary indoor environments; this algorithm is adaptable to various conditions, computationally inexpensive, and accurate enough to use for practical applications. The proposed algorithm uses odometry acquired from other sensors or other algorithms as the initial estimate and the directional features of indoor structures as landmarks. The directional features can only correct the rotation error of the odometry. However, we show that the greater part of the translation error of the odometry can also be corrected when the directional features are detected at almost positions accurately. In that case, there is no need to use other kinds of features to correct translation error. The directions of indoor structures have two advantages as landmarks. First, the extraction of them is not affected by obstacles. Second, the number of them is small regardless of the size of the building. Because of these advantages, the proposed SLAM algorithm shows robustness for parameters and lightweight properties. From extensive experiments with 2D/3D datasets taken from different buildings, we show the practicality of the proposed algorithm. We also demonstrate that the 2D algorithm runs in real time on a low-end smartphone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.